Today:
• Difference-in-Differences (DD) Estimators
• Difference-in-Difference-in-Differences (DDD) Estimators (Triple Difference)

Difference-in-Difference Estimation
• Main idea of using Difference-in-Differences:
 – Look at effects of treatment by comparing two groups, before and after treatment
 – Like individual FE, difference out time invariant heterogeneity - this time between treatment and control groups
 – Individual FE like DD, but difference means of same unit over time
 – DRAW GRAPH with treatment and control groups with trends - show non DD and DD estimates
• Basic, non-regression setup:
 \[
 \text{Treatment effect} = (\bar{y}_{B,2} - \bar{y}_{B,1}) - (\bar{y}_{A,2} - \bar{y}_{A,1})
 \]
 – where, \(B \) is treated group
 – \(A \) is control group
 – Treatment happens in period 2
• For DD stuff, can usually do a lot with just analyzing means - regressions just add control for other covariates that may confound results
• Key assumptions:
 – “Common trends” - absent treatment, treatment and control groups would have continued pre-treatment trends
 * Can test DD using data from more periods and plot the two time series to check parallel trend assumption
 – Treatment and control groups are comparable - differences between two would remain same, absent treatment
 * This is where judgement is used - will need to be able to argue that control is appropriate
 * Use alternative control groups [not as convincing as potential control groups are many]
 – Compare to FE - same person - groups can change composition (e.g. selection into treatment)
 * Has lead to “sharper” estimators like RD - more likely thought to give better control group
• Causality - DD gives ideal setting for Granger Causality type test
 – Include leads and lags of dummies for time of treatment
 \[
 Y_{it} = \gamma_s + \lambda_t + \sum_{r=0}^{m} \delta_{-r} D_{s,t-r} + \sum_{r=1}^{q} \delta_{+r} D_{s,t+r} + X'_{ist} \beta + \varepsilon_{ist}
 \]
 – Lagged effects of treatment
 – Anticipatory effects of treatment
 * If treatment causal, then dummies for leads should show no effect of treatment
• SE
 – Binary covariates define groups within which errors are potentially correlated (e.g., cities, states, years, states after treatment)
 – Thus often want to use clustered standard errors
 * Good practice is to try clustering over different groups (e.g. state or time) and report the clustering that gives the largest standard errors
 * This a more serious problem if the number of periods in data is large (because more serial correlation)
• Stata: `reg` with dummies for post treatment, treatment group, and interactions of treatment group and post treatment dummies

• Idea: Test of tax salience.
 – Do less salient taxes have as big an impact on demand?
 – Do less salient taxes result in bigger government?
• Natural experiment: the introduction of electronic toll collection (ETC) on U.S. roads, bridges, and tunnels
• Questions:
 – Does the introduction of ETC mean road use less sensitive to tolls?
 – Does the introduction of ETC result in more increases in tolls? (i.e., larger government)
• Data:
 – Hand collected data on tolls, traffic, and the timing of introduction of toll collections in 123 of the 183 sites with tolls in place in 1985.
 – She conducts her own survey of Mass Pike drivers and uses a survey of NY/NJ commuters
• Basic Model:
 – \(y_{it} = \gamma_t + \beta_1 \text{ETC Adopt}_{it} + \beta_2 \text{ETC}_{it} + \epsilon_{it} \), where
 – \(y_{it} = \Delta \log(\text{Minimum Toll}) \)
 – ETC=1 if electronic in place in year \(t \)
 – ETC Adopt=1 if adopted this year
 – \(\gamma_t \) are year controls
 – Since dep variable is in differences, year controls capture average growth rates by year, and the \(\beta \)'s capture deviations from those growth rates.
• Coefficient of interest is \(\beta_2 \) - how tolls increase with ETC
• Identification:
 – Difference-in-Differences: comparing changes across areas with and without ETC.
 – Key assumption: ETC are exogenous
 * Places with ETC implemented are on same trend line as places w/o ETC
 * ETC implementation is not correlated with changes in toll setting relative to its norm.
– Does some analysis with collection location FE → ID off changes within location (but not in main spec)

- Results:
 – Elasticities of toll use smaller in presence of ETC (but small elasticities anyway)
 – Evidence is compelling that tax rates rise when less salient tax is created (tolls rise with ETC introduction)
 * Installing ETC leads to 75% more increase in tolls
 * Idea: once you use electronic payment you no longer pay attention to the toll amount
 – Political economy result:
 * Baseline assumption is that legislators do not want to increase taxes in election years.
 * If less salient taxes do not change behavior (people are less aware of the tax changes) then there should be less of an election year effect with the less salient tax
 * Indeed, under ETC there is less of an election year effect. Tolls less sensitive to electoral cycle when ETC in place.

- Never published (not sure why), but great teaching paper and also very influential paper
- Question: How responsive are married women to changes in tax rates?
- Natural experiment: Tax Reform Act of 1986 (TRA86)
 – Lowered marginal rates for many - especially high income
 – Reduced the number of tax brackets
- Basic Model (employment): \(P(LFP_{it} = 1) = \alpha_0 + \alpha_1 X_{it} + \alpha_2 High_{it} + \alpha_3 Post86_t + \alpha_4 (High \times Post86)_{it} \)
 – \(High_{it} = 1 \) if in the 99th percentile
 – \(X_{it} = \text{age, educ, \# kids, young kids, race, central city, year \& state fixed effects} \)
 – \(\alpha_4 \) is main coeff of interest - effect of TRA86 on work incentives
- Identification:
 – DD - comparing LFP differences between high and low income groups before and after TRA86
 – Control groups are 75th and 90th percentile (observations of people with income within +/- 5 percentage points of these percentiles)
 * Tradeoff: 90th better control but gets some treatment
 – Key assumptions:
 * TRA86 exogenous to female labor supply (unlikely a problem here)
 * Treatment and control (high and lower income) have similar employment trends absent TRA86
 - May not be a good assumption
 - Really depends how close you think two groups are (more power couples now?)

- Results:
 – Large response for participation, less for hours
Consistent w/ lit showing greater responsiveness on participation margin than hours margin (Mroz, Hausman)

Difference-in-Difference-in-Difference Estimation

- Main idea of using Triple Difference:
 - Difference out trends that may differentially affect treatment and control groups in DD estimator
 - Kind of like a robust DD - if not different, then it’s like a robustness test

- Why use DDD?
 - In principle, can create a DDD as the difference between actual DD and placebo DD (DD between 2 control groups).
 - However, DDD of limited interest in practice because
 1. If $\text{DD}_{\text{placebo}} \neq 0$, DD test fails, hard to believe DDD removes bias
 2. If $\text{DD}_{\text{placebo}} = 0$, then DD=DDD but DDD has higher s.e.

- Stata: Same as DD, just more interactions. DDD estimate will be a triple interaction

- Question: Does the effect of a tax depend upon whether it is included in the posted price?

- Experiments (we’ll focus on the first):
 1. Field Experiment: Post tax inclusive prices on large number of products in grocery stores
 2. Natural Experiment: Excise tax included in posted price, sales tax not. Variation in taxes across states and time.

- Data:
 - 750 products (3 product categories)
 - 3 week period for treatment
 - Large grocery store, national chain
 - 2 control stores
 - Scanner data from all three stores over 65 week period

- Basic Model: $Y = \alpha + \beta_1 TT + \beta_2 TS + \beta_3 TC + \gamma_1 TT*TC + \gamma_2 TT*TS + \gamma_3 TS*TC + \delta TT*TS*TC + \xi X + \epsilon$
 where:
 - $Y = \text{log sales}$
 - $TT = \text{Treatment Time}$
 - $TS = \text{Treatment Store}$
 - $TC = \text{Treatment Category}$
 - δ is coeff of interest and equals DDD estimate using means if no covariates included

- Identification:
 - DDD - changes in demand for treated products relative to changes in demand for untreated products
• $DD_{TS} = -2.14$ units is the “within treatment store” difference-in-difference estimate of the impact of posting tax inclusive prices
• $DD_{CS} = -0.06$ units is the “within control store” DD of the sales trends of the treatment and control categories (statistically zero - validates assumption of common trends)
• $DDD = DD_{TS} - DD_{CS}$ - within store and within product trends are difference out
• Nicely done with analysis of means and then DDD with regression

- Key assumptions:
 - For DD: Common trends: sales of the treatment and control products would have evolved similarly absent our intervention
 - For DDD: no shock during our experimental intervention that differentially affected sales of only the treatment products in the treatment store

• Results:
 - Result is that consumers seem under-respond to taxation.
 • Making sales tax more salient reduced demand by 7.6%
 • A 10 percent tax increase reduces demand by the same amount as a 3.5 percent price increase
 - This lack of response implies that taxation is less distortionary that it would be if agents fully responded.

• Question (Methodological): Can we see impact of treatment even if we don’t observe a pre-treatment period?

• Idea:
 - Match initial participants with non-participants (to get rid of effects of selection into program)
 - Match leavers and stayers (to get rid of selection effect of staying in program)
 - Calculate the DDD using the DD between matched stayers and leavers
 - Propensity score matching helps with selection on observables
 - DDD helps with selection on unobservables

• Experiment: Argentina’s Trabajar Program: gov’t work program for poor, unemployed

• Data: Survey of Trabajar Participants, Permanent Household Survey (twice yearly, cross-section)

• Identification:
 - Matching - assuming results in comparable groups for participation/not
 - Assumption that earnings trends similar for those who did and didn’t drop out (absent difference in treatment) (I think)

• Triple Difference Estimator
 - $DD_{treat} = \text{Change in continuing participants' outcome} - \text{Change in ex-participants' outcome}$
 - $DD_{control} = \text{Change in control group matched to participants} - \text{Change in control group matched to ex participants}$
 - $DDD = DD_{treat} - DD_{control} = \text{impact of program participation}$
 - Propensity Score Matching (PSM) controls for heterogeneity based on observables
- DD estimates control for heterogeneity based on unobservable differences in treatment and control groups.
- Still lacking control for unobs heterogeneity that cause selection into program, but authors argue they can sign this bias.

Results:
- Trabajar Program had significant impact on workers’ earnings.